高一是基础,很多同学不重视高一的学习,这样加大高考复习难度。今天我们学大教育专家为同学们带来的知识就是高一数学上册课文指数分指数教案。下面就是我们带来的高一数学上册课文指数分指数教案,希望对你的数学带来帮助。
教学目的:
1.理解分数指数幂的概念.
2.掌握有理指数幂的运算性质.
3.会对根式、分数指数幂进行互化.
4.培养学生用联系观点看问题.
教学重点:
1.分数指数幂的概念.
2.分数指数幂的运算性质.
教学难点:对分数指数幂概念的理解.
授课类型:新授课
课时安排:1课时
教具:多媒体、实物投影仪
教材分析:
本节在根式的基础上将指数概念扩充到有理指数幂,并给出了有理指数幂的运算性质在分数指数幂概念之后,课本也注明“若a>0,p是一个无理数,则pa表示一个确定的实数”为高中三年级限定选修课学习导数时做准备
在利用根式的运算性质对根式的化简过程,注意发现并归纳其变形特点,进而由特殊情形归纳出一般规律.在学生掌握了有理指数幂的运算性质后,进一步将其推广到实数范围内,但无须进行严格的推证,由此让学生体会发现规律,并由特殊推广到一般的研究方法.
教学过程:
一、复习引入:
1.整数指数幂的运算性质:
2.根式的运算性质:
⑴非负实数a的n次方根的n次幂是它本身.
⑵n为奇数时,实数a的n次幂的n次方根是a本身;n为偶数时,实数a的n次幂的n次方根是a的绝对值.
⑶若一个根式(算术根)的被开方数是一个非负实数的幂,那么这个根式的根指数和被开方数的指数都乘以或者除以同一个正整数,根式的值不变.
二、讲解新课:
1.正数的正分数指数幂的意义
2.有理指数幂的运算性质
说明:若a>0,P是一个无理数,则pa表示一个确定的实数,上述有理指数幂的运算性质,对于无理数指数幂都适用,有关概念和证明在本书从略.
三、小结 本节课学习了以下内容:
分数指数幂的意义,分数指数幂与根式的互化,有理指数幂的运算性质.
在上面文章中,我已经为同学们带来了高一数学上册课文指数分指数教案。如果你想要在高中学习过程中取得好成绩,就希望你认真利用我们带来的学习方法。